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Abstract
We consider a disordered spin model with multi-spin interactions undergoing
a glass transition. We introduce dynamic and static length scales and compute
them in the Kac limit (long-but-finite range interactions). They diverge at the
dynamic and static phase transition with exponents −1/4 and −1 (respectively).
The two length scales are approximately equal well above the mode coupling
transition. Their discrepancy increases rapidly as this transition is approached.
We argue that this signals a crossover from mode coupling to activated
dynamics.

PACS numbers: 05.20.−y, 64.70.Pf, 75.10.Nr

The relaxation mechanisms of supercooled liquids near the glass transition are today poorly
understood. For moderate supercooling, mode coupling theory (MCT) captures several
important dynamical features, such as time scale separation and the relation between α and β

relaxation [1]. Unfortunately MCT fails at low temperature since it predicts a spurious power
law divergence of the relaxation time at an ergodicity breaking temperature Td.

A partial elucidation of ergodicity restoration below Td originated from the remark that
MCT is exact for some mean-field disordered spin models [2]. In this context, the relaxation
time divergence at Td finds its root in the proliferation of metastable states with diverging
lifetime. The existence of such states provides the basic ergodicity restoration force in finite
dimension. Phenomenological droplet arguments based on this mean field picture [3, 4] predict
in fact the existence of about exp{��d} different states at length scale �, while a given boundary
condition can select one of them by raising the free energy of the others by at most �F = σ�θ

with θ � d − 1. Balancing these two forces yields a ‘mosaic length’ �s ≈ (βσ/�)
1

d−θ , above
which the system is thermodynamically a liquid.

The above picture suggests that the typical size of ergodicity restoring rearrangements
is determined by thermodynamics. According to an alternative intuition (largely inspired
by kinetically constrained models [5]), as the temperature is lowered, it becomes impossible
to relax local degrees of freedom through purely local moves. The relevant length scale is
essentially dynamical and corresponds to the size of cooperative rearrangements.

1751-8113/07/110251+07$30.00 © 2007 IOP Publishing Ltd Printed in the UK F251

http://dx.doi.org/10.1088/1751-8113/40/11/F01
http://stacks.iop.org/JPhysA/40/F251


F252 Fast Track Communication

In both scenarios, the typical size of rearranging regions can be characterized by a
dynamical (four points) susceptibility and a corresponding dynamical length ξd [6, 7]. Recent
experiments on colloidal systems and supercooled liquids have indeed revealed a marked
increase of ξd close to the glass transition [8]. Within MCT, ξd has been shown to diverge at
Td [6, 7] with no static counterpart.

A relation between mosaic length and the dynamical length ξd was first noticed by Jack
and Garrahan [9] in a plaquette glass model. However a detailed theoretical description of this
relation is lacking.

The aim of this communication is to present the first analytic calculation of the mosaic
length scale, and its comparison with the dynamical length computed in a unified framework.
To this end we study a disordered model with Kac interactions [10, 11] and define length scales
through properly chosen point-to-set correlation functions. We are thus able to answer some
fundamental open questions, such as their relative order of magnitude in different temperature
regimes.

It is well known that conventional static correlation functions do not show any signature
of a large length scale in supercooled liquids. In order to circumvent this problem, we define
length scales through ‘point-to-set’ correlations [4, 12]. We fix a reference configuration
s(α) = {

s(α)
x

}
x∈Z

d drawn from the equilibrium Boltzmann measure, and considers a second
configuration s that is constrained to be close to s(α) outside a sphere Bx0(�) of radius � centred
at a particular point x0. In introducing the static correlation length �s, s is distributed according
to the Boltzmann law inside Bx0(�) with a boundary condition determined by s(α). We then
define �s to be the smallest value of � such that the correlation between s(α) and s at the
centre of Bx0(�) (as measured through a correlation function, e.g. 〈s(α)

x0
sx0〉conn) decays below

a preassigned value ε.
Consider now a particular choice of local stochastic dynamics verifying detailed balance.

Let τ be the autocorrelation time for a local degree of freedom. As shown in [13], in
a finite range system, one has necessarily C1�s � τ � exp

(
C2�

d
s

)
, with C1 and C2 two

model dependent constants. The lower bound corresponds to a MCT-like dynamics, a good
description for T � Td (up to a non-trivial scaling exponent, i.e. τ ∼ �z

s , with z � 1).
The upper bound corresponds instead to the activated behaviour that should hold below Td

(we expect τ ∼ exp
(
�

ψ
s
)
, with ψ � d − 1). In a model with large-but-finite interaction range

γ −1 (see below), one finds �s(T , γ ) ≈ γ −1̂�s(T ), and the two types of dynamics can be
distinguished sharply (exponentially in 1/γ ).

The two regimes can be bridged defining a new dynamical length �d which separates
scales � � �d on which non-activated relaxation is possible, from scales � � �d on which
activation is necessary. In order to precise this notion, consider a system initialized by setting
s(t = 0) = s(α) and constrained to remain close to s(α) outside Bx0(�) at all subsequent times,
and let τ(�) be the shortest time such that

〈
sx0(0)sx0(t)

〉
conn decays below ε. By the above

definition τ(�) = ∞ for � < �s. We define �d by the property that τ(�) is (exponentially)
divergent as γ → 0 for � < �d, and stays bounded for � > �d.

In the following we shall compute �s and �d in a d-dimensional spherical p-spin disordered
model with Kac interactions. Its elementary degrees of freedom are soft spins si ∈ R,
associated with the vertices of a cubic lattice of size 2L (i.e. i ∈ {−L + 1, . . . , L}d ), with
periodic boundary conditions. Given the interaction range γ −1 > 0 and a non-negative
rapidly decreasing function ψ : R+ → R+, normalized by

∫
ψ(|x|) ddx = 1, we define the

local overlap of two configurations s(1) and s(2) as Q12(i) = γ d
∑

jψ(γ |i − j |)s(1)
j s

(2)
j . The

local spherical constraint is Q11(i) = γ d
∑

jψ(γ |i − j |)s(1)
j s

(1)
j = 1. The Hamiltonian H(s)

is a quenched Gaussian random variable of zero mean and covariance E[H(s(1))H(s(2))] =
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Figure 1. Dynamic (empty squares) and static (filled squares) rescaled lengths �̂d and �̂s, for a Kac
model with two and four spin interactions. The vertical lines correspond to the mode coupling and
thermodynamic glass transitions Td ≈ 0.813 526 and Ts ≈ 0.766 287. In the inset, the rescaled
lengths as functions of (T − Td) (for �̂d) and (T − Ts) (for �̂s). The dotted lines have slope
(respectively) −1/4 and −1.

∑
if (Q12(i)), where f (x) is a polynomial with positive coefficients. In the following we

shall use as running example the polynomial f (x) = 1
10x2 +x4 (i.e. a model with two and four

spin interactions) in d = 2 dimensions (but the critical behaviour is independent of d � 2).
While the quartic term in the polynomial assures the wanted phenomenology at the mean-field
level, the relatively small quadratic term is introduced to have a regular gradient expansion of
the free-energy functional (see below and [11]). The Kac limit is defined as L � γ −1 � 1
(in other words, the limit γ → 0 is taken after L → ∞). It is convenient to define the
rescaled lengths �̂s/d ≡ γ �s/d that admit a finite limit as γ → 0. In figure 1 we plot �̂d and
�̂s as functions of temperature for our running example, in the Kac limit. They diverge at
two distinct temperatures Td and Ts. The dynamical length diverges as �̂d ∼ (T − Td)

−1/4.
This is the same behaviour as (independently) found within MCT for the length ξd [6, 14],
we therefore identify �d with ξd. The static length behaves as �̂s ∼ 1/�(T ) ∼ (T − Ts)

−1

corresponding to θ = d − 1.
We shall now explain how the lengths �d and �s have been computed. Consider a reference

configuration s(α), a sphere B0(�) with radius �, centred at x = 0, and let q � 1. We introduce
the constrained Boltzmann measure 〈·〉α� by setting

〈O〉�α = 1

Zα

∫
s

O(s) e−βH(s)
∏

i �∈B0(�)

δ(Qs,s(α) (i) − q), (1)

where
∫
s

denotes integration over configurations satisfying the local spherical constraint. For

technical reasons it is preferable to take q < 1: s is only required to be close to s(α) outside
B0(�). The results are qualitatively independent of q if this is large enough. Next we define
the correlation function

G(�) ≡ E
{
Es(α)

[〈Qs,s(α) (0)〉α�
]}

, (2)

where Es(α) and E denote (respectively) averages over the reference configuration and the
quenched disorder. The static length scale �s is the smallest � such that G(�) � ε.
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The averages Es(α) and E can be taken by introducing replicas along the lines of [11].
Integrals over the spin variables are then traded for and nr × nr matrix order parameter
qab(i). Next we rescale the position to define x = γ i ∈ [−L̂, L̂]d , L̂ ≡ γL, and write (with
an abuse of notation) qab = qab(x), to get

G(�) = lim
n → 0
r → 1

∫
q1,n+1(0) e

− 1
γ d S[qab]

d[qab]. (3)

The dependence upon γ is now completely explicit and the functional integral can be performed
using the saddle point method. Inspired by the solution of the mean field model [15], we look
for a one-step replica symmetry breaking (1RSB) saddle point q1RSB

ab (x). This is characterized
by three scalar functions p(x), q1(x) and q0(x) and by a single Parisi 1RSB parameter m.
While p(x) is the local overlap between the reference configuration s(α) and the constrained
one s, q1(x) and q0(x) are the overlaps of two constrained configurations when they belong
(respectively) to the same or to different metastable states. Using this ansatz, one obtains
S[Qab] = n

∫
L(x) ddx + O(n2), where

L = −β2

2
{f (1) + 2f (ψ ∗ p) − (1 − m)f (ψ ∗ q1) − mf (ψ ∗ q0)}

+
1

2

p2 − q0

1 − (1 − m)q1 − mq0
− m − 1

2m
log(1 − q1) − 1

2m
log[1 − (1 − m)q1 − mq0], (4)

with the various fields being evaluated at position x. Here we used the shorthand
ψ ∗ q(x) = ∫

ψ(|x − y|)q(y) ddy. The constraint enforcing s to be close to s(α) outside
B0(�) is fulfilled by setting p(x) = q for x �∈ B0(̂�) (note the rescaling of the radius:
�̂ = γ �).

Using equation (3), we obtain limγ→0 G(̂�/γ ) = p(0), where p(x) is evaluated at the
minimum of the action S0 = ∫

L(x) ddx. This implies that, as anticipated, �̂s(T ) = γ �s(T , γ )

has a finite γ → 0 limit. We minimize the action looking spherically symmetric saddle
points and iterating numerically the Euler–Lagrange equations for (4) until a stationary point
is reached. We then repeat for several initial values of p(x), q0(x) and q1(x) conditions, and
compare the corresponding stationary points.

Since this procedure is relatively heavy from a computational point of view, we simplify
the Lagrangian (4) in two ways. First, we expand the terms of the form f (ψ ∗ q)(x) in
gradients of q(x), and truncate to second order, thus obtaining f (q) + cf ′(q)�q(x), where
c = 1

2d

∫
z2ψ(|z|) ddz (in our running example c = 1). Second, we discretize the model on

a lattice of spacing h in the radial coordinate. Neither of these simplifications is expected
to modify the qualitative behaviour of the model, and we checked our predictions against
alternative discretizations.

In figure 2 we show some typical results for T � Td. For small �̂, a unique solution
is found. The overlap p(x) between the probe replica and the reference one is everywhere
large: close to q on the border, it saturates well inside the ball to a smaller value qd roughly
independent of the ball radius. The two overlaps q0(x), q1(x) are equal and close to p(x).
As �̂ crosses some small value �̂0, a new solution appears, with p(x) rapidly decaying to 0
in the interior of the ball, and the influence of the boundaries remaining confined to a small
distance ρ. This solution describes a constrained replica s well decorrelated from the reference
one s(α), but has initially higher value of the free energy and is therefore thermodynamically
irrelevant. The static length �̂s is the smallest value of �̂, such that the free energy of the
low-overlap solution becomes smaller than the free energy of the high-overlap one. Above
this length, the correlation between s and s(α) in the centre of the ball is small. However, the
high-overlap solution persists as a metastable state. If the system is allowed to evolve from
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Figure 2. Saddle points of the 1RSB action, cf equation (4) for T = 0.813 65 and several values
of the ball radius �̂. Here we plot the outcome of the iterative solution initiated with the p(x) = q

identically. For �̂ < �̂d = 59, this is the high-overlap solution. For �̂ > �̂d no high-overlap solution
exists: the remaining dependence upon �̂ is essentially a shift.
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Figure 3. Plot of the overlap p(0) as a function of �̂ in the approximated model with for
T = 1.0101, 0.9065, 0.8319, 0.8222, 0.815 10, 0.8142 > Td and T = 0.7990 < Td. Inset:
comparison between the approximate (analytical) and complete (numerical) minimization of the
action for T = 0.8222.

the initial condition s(α) (and is constrained outside the ball), it will take an exponential (in
1/γ ) time to equilibrate. The high-overlap solution disappears at a larger radius �̂d. For �̂ > �̂d,
the system is no more trapped in a metastable state selected by the reference configuration.

The evolution of different solutions as a function of �̂ can be followed in figure 3, where
we plot the overlap p(0) between s(α) and s at the centre of the ball. For T � Td, p(0) is
a single valued function of �̂. Closer to Td, multiple branches develop, with the coexistence
region diverging as T ↓ Td. Beyond the high- and low-overlap solutions described above, an
intermediate unstable branch is also present. In order to recover the full curve (including the
unstable branch) we resorted to a simple approximation: we minimized the action under the
constraint p(x) = q0(x) = q1(x). In this setting, and under the ‘thin wall approximation’
[16], the problem is equivalent to a one-dimensional mechanical system, and can be solved
by quadratures. As shown in the inset of figure 3, the approximate and complete actions
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Figure 4. Typical shape of the configurational entropy ��̂(f ) for �̂s < �̂ < �̂d (here
T = 0.814 > Td, �̂s ≈ 16, �̂d ≈ 41 and �̂ = 25). Inset: configurational entropy ��̂(f∗)/̂�d

of the dominating metastable states as a function of �̂. The curve crosses the axis at �̂1RSB and
ends at �̂d.

give results in good agreement. In particular, both cases yield the critical behaviours �s ∼
(T − Ts)

−1 and �d ∼ (T − Ts)
−1/4. Below Td all three branches extend to infinity, indicating

that activation is necessary on all length scales.
The complete 1RSB Lagrangian (4) allows for a more precise description of the system.

Consider T close to Td and �̂ ∈ [̂�0, �̂d ], where �̂0 is the minimal length for multiple solutions.
As anticipated, on the low overlap solution, we find q1 > q0. The interpretation is, as usual,
that this solution does not describe a liquid phase, but rather a glassy one, with many pure
states. The internal overlap of each such state is q1 and the overlap between distinct states
q0. The number of metastable states is exponential in � = �̂/γ for �̂ > �̂1RSB (the action is
maximized by m = 1) and subexponential for �̂ < �̂1RSB (m < 1). RSB slightly modify the
free energy of the low overlap solution for �̂ < �̂1RSB thus changing the value of �̂s.

Let us reconsider the thought experiment of letting the system evolve starting from
the reference configuration s(α). The system escapes the metastable state selected by s(α) in
a time exponential in 1/γ . After that, however, it does not equilibrate freely within the rest
of phase space, but rather moves through activation from one state to the other, spending an
exponential time in each one.

By taking the Legendre transform of the m-dependent free energy, we can compute the
configurational entropy ��̂(f ) (i.e. the log number of metastable states as a function of their
internal free-energy f ) [17]. In figure 4 we show an example of its behaviour for �̂s < �̂ < �̂d.
An exponential number of metastable states is present in an �̂-dependent free energy interval
[f1, f2] (most of them having free energy f2). The dominating ones have free energy f∗
determined by maximizing ��̂(f ) − βf . The free energy F+ of the high overlap state is lower
than for most of other metastable states F+ < f2 (because of the better matching with the
boundaries) but higher than the overall free energy F− = f∗ − T ��̂(f∗). If �̂ is decreased,
the gap between F− and F+ decreases. At �̂1RSB the configurational entropy ��̂(f∗) vanishes
and F− = f∗ = f1. Eventually F− and F+ cross at �̂ = �̂s < �̂1RSB. If on the other hand �̂

is increased, the configurational entropy increases as well, until the 1RSB solution ceases to
exist. This happens at the dynamical length �̂d, coherently with the fact that beyond this scale
relaxation does not require activation.

For a small non-vanishing γ , the above picture should remain roughly correct. However,
activated and MCT time scales must now be compared. The first one corresponds a typical
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relaxation time τact ∼ exp
{
ϒ�

ψ
s
}
, while the second gives τMCT ∼ �z

d. Therefore, MCT
behaviour is faster and dominates until very close to Td. The divergence is then cut-off when
�d(T ) ≈ exp{ϒ�s(Td)

ψ/z}, and dynamics becomes activated at lower temperatures. During
this crossover, the physical dynamical length ξd characterizing the size of cooperatively
rearranging regions crosses over from ξd ≈ �d to ξd ≈ �s.

Summarizing we implemented the mean-field theory of mosaic state in a microscopic
model. This allowed to establish relations between mosaic and MCT dynamical lengths which
had not been predicted from phenomenological considerations. The dynamical length scale
is defined by the property that dynamics is dominated by activation at shorter scales. It can
further be identified with that appearing in the MCT divergence of four point susceptibilities.
Below mosaic length the system is instead rigid for thermodynamic reasons. The two happen
to be close above the MCT critical temperature and widely separated between this and the
glass transition, corresponding to the crossover between relaxational and activated dynamics.
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